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Outline

• Bayesian Decision Theory

– How to make the optimal decision?

– Maximum a posterior (MAP) decision rule

• Generative Models

– Joint distribution of observation and label sequences

– Model estimation: MLE, Bayesian learning, discriminative training

• Discriminative Models

– Model the posterior probability directly (discriminant function)

– Logistic regression, support vector machine, neural network
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Model Parameter Estimation

 Maximum Likelihood (ML) Estimation:
– ML method: most popular model estimation
– EM (Expected-Maximization) algorithm
– Examples:

• Univariate Gaussian distribution
• Multivariate Gaussian distribution
• Multinomial distribution
• Gaussian Mixture model
• Markov chain model: n-gram for language modeling
• Hidden Markov Model (HMM)

 Discriminative Training
– Minimum Classification Error (MCE) 
– Maximum Mutual Information (MMI) 

 Bayesian Model Estimation: Bayesian theory



Minimum Classification Error Estimation (I)

• In a N-class pattern classification problem, given a set of training 
data, D={ (X1, C1), (X2, C2), …, (XT, CT)}, estimate model parameters 
for all class to minimize total classification errors in D.

– MCE: minimize empirical classification errors

• Objective function  total classification errors in D

– For each training data, (Xt, Ct), define misclassification measure:

or

If d(Xt, Ct)>0, incorrect classification for Xt  1 error

If d(Xt, Ct)<=0, correct classification for Xt  0 error

)|()(max)|()(),( Ct
CC

Ctttt XpCpXpCpCXd
t

t





)]|()(ln[max)]|()(ln[),( Ct
CC

Ctttt XpCpXpCpCXd
t

t







Minimum Classification Error Estimation (II)

• Soft-max: approximate d(Xt, Ct) by a differentiable function:

or
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Minimum Classification Error Estimation (III)

• Error count for one data (Xt, Ct), is a step function H(d(Xt, Ct))

• Total errors in training set:

• Step function is not differentiable, approximated by a sigmoid 
function  smoothed total errors in training set.
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Minimum Classification Error Estimation (IV)

• MCE estimation of model parameters for all classes:

• Optimization: no simple solution is available

– Iterative gradient descent method.

– Stochastic GD, batch mode, mini-batch mode
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Minimum Classification Error Estimation (V)

• Find initial model parameters, e.g., ML estimates

• Calculate gradient of the objective function

• Calculate the value of the gradient based on the current parameters

• Update model parameters

• Iterate until convergence 
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How to Calculate Gradient?
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 The key issue in MCE training is to set a proper step size experimentally.



Overtraining (Overfitting)

 Low classification error rate in training set does not always 
lead to a low error rate in a new test set due to overtraining.



Measuring Performance of MCE

 When to converge: monitor three quantities in the MCE
– The objective function
– Error rate in training set
– Error rate in test set
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Maximum Mutual Information Estimation (I)

• The model is viewed as a noisy data generation channel

Class id C  observation feature X

• Maximize mutual information between C and X 
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Maximum Mutual Information Estimation (II)

• Difficulty: joint distribution p(C,X) is unknown.
• Solution: collect a representative training set (X1, C1), (X2, C2), …, 

(XT, CT) to approximate the joint distribution.

• Optimization: 
– Iterative gradient-ascent method
– Growth-transformation method
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Bayesian Model Estimation

• Bayesian methods view model parameters as random variables 
having some known prior distribution. (Prior specification)

– Specify prior distribution of model parameters θ as p(θ).

• Training data D allow us to convert the prior distribution into a 
posteriori distribution. (Bayesian learning)
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Bayesian Learning
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MAP Estimation

• Do a point estimate about θ based on the posteriori distribution

• Then θMAP is treated as estimate of model parameters ( just like ML 
estimate). Sometimes need the EM algorithm to derive it.

• MAP estimation optimally combine prior knowledge with new 
information provided by data.

• MAP estimation is used in speech recognition to adapt speech 
models to a particular speaker to cope with various accents
– From a generic speaker-independent speech model  prior
– Collect a small set of data from a particular speaker
– The MAP estimate give a speaker-adaptive model which suits 

better to this particular speaker.
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How to Specify Priors

• Noninformative priors

– Without enough prior knowledge, just use a flat prior

• Conjugate priors: for computation convenience

– After Bayesian leaning the posterior will have the exact same 
function form as the prior except the all parameters are updated. 

– Not every model has conjugate prior.



Conjugate Prior

• For a univariate Gaussian model with only unknown mean:

• The conjugate prior of Gaussian is Gaussian

• After observing a new data x1, the posterior will still be Gaussian:
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The Sequential  MAP Estimate of Gaussian 

• For univariate Gaussian with unknown mean, the MAP 
estimate of its mean after observing x1:

• After observing next data x2:
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